\begin{tabbing} w{-}pred($w$;$e$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=if\= (time($e$) =$_{0}$ 0)\+\+ \\[0ex]then inr $\cdot$ \-\\[0ex]if\= isnull(a(loc($e$);time($e$) {-} 1))\+ \\[0ex]then w{-}pred($w$;$<$loc($e$), time($e$) {-} 1$>$) \-\\[0ex]else inl $<$loc($e$), time($e$) {-} 1$>$ \\[0ex]fi \\[0ex] \-\\[0ex]{\em clarification:} \\[0ex] \\[0ex]w{-}pred($w$;$e$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=if\= (w{-}time($w$; $e$) =$_{0}$ 0)\+\+ \\[0ex]then inr $\cdot$ \-\\[0ex]if\= w{-}isnull($w$; w{-}a($w$; w{-}loc($w$; $e$); (w{-}time($w$; $e$) {-} 1)))\+ \\[0ex]then w{-}pred($w$;$<$w{-}loc($w$; $e$), w{-}time($w$; $e$) {-} 1$>$) \-\\[0ex]else inl $<$w{-}loc($w$; $e$), w{-}time($w$; $e$) {-} 1$>$ \\[0ex]fi \-\\[0ex]\emph{(recursive)} \end{tabbing}